Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Eur J Pharmacol ; 914: 174615, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1549762

ABSTRACT

In this study, the therapeutic efficacy of quercetin in combination with remdesivir and favipiravir, were evaluated in severe hospitalized COVID-19 patients. Our main objective was to assess the ability of quercetin for preventing the progression of the disease into critical phase, and reducing the levels of inflammatory markers related to SARS-Cov-2 pathogenesis. Through an open-label clinical trial, 60 severe cases were randomly divided into control and intervention groups. During a 7-day period, patients in the control group received antivirals, i.e., remdesivir or favipiravir, while the intervention group was treated with 1000 mg of quercetin daily in addition to the antiviral drugs. According to the results, taking quercetin was significantly associated with partial earlier discharge and reduced serum levels of ALP, q-CRP, and LDH in the intervention group. Furthermore, although the values were in normal range, the statistical outputs showed significant increase in hemoglobin level and respiratory rate in patients who were taking quercetin. Based on our observations, quercetin is safe and effective in lowering the serum levels of ALP, q-CRP, and LDH as critical markers involved in COVID-19 severity. However, according to the non-significant borderline results in comparing the mortality, the ICU-admission rate, and the duration of ICU-admission, further studies can be helpful to compensate the limitations of our study and clarify the therapeutic potential of quercetin in COVID-19 treatments.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amides , COVID-19 Drug Treatment , COVID-19 , Pyrazines , Quercetin , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Alanine/administration & dosage , Alanine/adverse effects , Amides/administration & dosage , Amides/adverse effects , Antioxidants/administration & dosage , Antioxidants/adverse effects , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Biomarkers/blood , COVID-19/diagnosis , COVID-19/immunology , COVID-19/mortality , Drug Monitoring/methods , Drug Monitoring/statistics & numerical data , Female , Hemoglobins/analysis , Humans , Male , Middle Aged , Outcome and Process Assessment, Health Care , Patient Discharge/statistics & numerical data , Pyrazines/administration & dosage , Pyrazines/adverse effects , Quercetin/administration & dosage , Quercetin/adverse effects , Respiratory Rate/drug effects
2.
Front Endocrinol (Lausanne) ; 12: 736724, 2021.
Article in English | MEDLINE | ID: covidwho-1533632

ABSTRACT

Background: Obesity has been reported to be an important contributing factor for precocious puberty, especially in girls. The effect of green tea polyphenols on weight reduction in adult population has been shown, but few related studies have been conducted in children. This study was performed to examine the effectiveness and safety of decaffeinated green tea polyphenols (DGTP) on ameliorating obesity and early sexual development in girls with obesity. Design: This is a double-blinded randomized controlled trial. Girls with obesity aged 6-10 years old were randomly assigned to receive 400 mg/day DGTP or isodose placebo orally for 12 weeks. During this period, all participants received the same instruction on diet and exercise from trained dietitians. Anthropometric measurements, secondary sexual characteristics, B-scan ultrasonography of uterus, ovaries and breast tissues, and related biochemical parameters were examined and assessed pre- and post-treatment. Results: Between August 2018 and January 2020, 62 girls with obesity (DGTP group n = 31, control group n = 31) completed the intervention and were included in analysis. After the intervention, body mass index, waist circumference, and waist-to-hip ratio significantly decreased in both groups, but the percentage of body fat (PBF), serum uric acid (UA), and the volumes of ovaries decreased significantly only within the DGTP group. After controlling confounders, DGTP showed a significantly decreased effect on the change of PBF (ß = 2.932, 95% CI: 0.214 to 5.650), serum UA (ß = 52.601, 95% CI: 2.520 to 102.681), and ovarian volumes (right: ß = 1.881, 95% CI: 0.062 to 3.699, left: ß = 0.971, 95% CI: 0.019 to 1.923) in girls with obesity. No side effect was reported in both groups during the whole period. Conclusion: DGTP have shown beneficial effects of ameliorated obesity and postponed early sexual development in girls with obesity without any adverse effects. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT03628937], identifier [NCT03628937].


Subject(s)
Adipose Tissue/drug effects , Antioxidants/therapeutic use , Pediatric Obesity/diagnostic imaging , Polyphenols/therapeutic use , Puberty, Precocious/drug therapy , Tea , Antioxidants/administration & dosage , Child , Double-Blind Method , Female , Humans , Polyphenols/administration & dosage , Puberty, Precocious/diagnostic imaging , Treatment Outcome , Waist Circumference/physiology
3.
Med Hypotheses ; 143: 109866, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1386296

ABSTRACT

Zinc Iodide and Dimethyl Sulfoxide compositions are proposed as therapeutic agents to treat and prevent chronic and acute viral infections including SARS-CoV-2 infected patients. The therapeutic combinations have a wide range of virucidal effects on DNA and RNA containing viruses. The combinations also exhibit anti-inflammatory, immunomodulating, antifibrotic, antibacterial, antifungal and antioxidative effects. Given the fact that Zinc Iodide has been used as an oral antiseptic agent and DMSO has been already proven as a safe pharmaceutical solvent and therapeutic agent, we hypothesize that the combination of these two agents can be applied as an effective, safe and inexpensive treatment for SARS-CoV-2 and other viral infection. The therapeutic compound can be applied as both etiological and pathogenesis therapy and used as an effective and safe antiseptic (disinfectant) for human and animals as well.


Subject(s)
Coronavirus Infections/drug therapy , Dimethyl Sulfoxide/administration & dosage , Disinfectants/administration & dosage , Iodides/administration & dosage , Pneumonia, Viral/drug therapy , Zinc Compounds/administration & dosage , Animals , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Antiviral Agents/administration & dosage , Betacoronavirus , COVID-19 , Drug Therapy, Combination , Humans , Inflammation , Pandemics , SARS-CoV-2 , Solvents , Virus Diseases/drug therapy , COVID-19 Drug Treatment
4.
BMC Pulm Med ; 21(1): 268, 2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1362052

ABSTRACT

BACKGROUND: Curcumin, a derivative of the spice turmeric, has been adopted by Eastern medicine for centuries as an adjunct to treat several medical conditions (e.g., anorexia and arthritis) because of its well-established anti-inflammatory properties. Studies have shown that the use of curcumin in mice models has led to reduction in several inflammatory markers as well as key inflammatory pathway enzymes. As a result, studies in Western medicine have developed to determine if this recognized benefit can be utilized for patients with inflammatory lung diseases, such as asthma. This study will seek to better understand if curcumin can be used as an adjunctive therapy for improving asthma control of patients with moderate to severe asthma; a finding we hope will allow for a more affordable treatment. METHODS: This study will utilize a randomized, placebo controlled, double blinded pilot superiority phase 2 trial at an outpatient pulmonary clinic in Southern California, USA. Subjects will be receiving Curcumin 1500 mg or matching placebo by mouth twice daily for the study period of 12 weeks. Subjects will be randomized to either a placebo or intervention Curcumin. Subjects will have 6 clinic visits: screening visit, a baseline visit, monthly clinic visits (weeks 4, 8, and 12), at weeks 4, 8, and a follow-up clinic visit or phone-call (week 16). Changes in asthma control test scores, number of days missed from school/work, FEV1 (% predicted), FEV1/FVC ratio, FVC (% predicted), blood eosinophil count, blood total IgE, and FeNO levels will be compared by group over time. DISCUSSION: The therapeutic effects of curcumin have been studied on a limited basis in asthmatics and has shown mixed results thus far. Our study hopes to further establish the benefits of curcumin, however, there are potential issues that may arise from our study design that we will address within this paper. Moreover, the onset of the COVID-19 pandemic has resulted in safety concerns that have delayed initiation of our study. This study will contribute to existing literature on curcumin's role in reducing lung inflammation as it presents in asthmatics as well as patients suffering from COVID-19. TRIAL REGISTRATION: This study protocol has been approved by the Institutional Review Board at Loma Linda University Health, (NCT04353310). IND# 145101 Registered April 20th, 2020. https://clinicaltrials.gov/ct2/show/NCT04353310 .


Subject(s)
Asthma , COVID-19 Drug Treatment , COVID-19 , Curcumin , Eosinophils , Immunoglobulin E/blood , Administration, Oral , Adult , Ambulatory Care/methods , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Antioxidants/administration & dosage , Antioxidants/adverse effects , Asthma/blood , Asthma/diagnosis , Asthma/drug therapy , Asthma/physiopathology , COVID-19/diagnosis , COVID-19/physiopathology , Clinical Trials, Phase II as Topic , Curcumin/administration & dosage , Curcumin/adverse effects , Double-Blind Method , Drug Monitoring/methods , Female , Humans , Leukocyte Count/methods , Male , Randomized Controlled Trials as Topic , SARS-CoV-2/isolation & purification , Severity of Illness Index
5.
Nutrients ; 13(4)2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1167677

ABSTRACT

Vitamin C is an essential nutrient that serves as antioxidant and plays a major role as co-factor and modulator of various pathways of the immune system. Its therapeutic effect during infections has been a matter of debate, with conflicting results in studies of respiratory infections and in critically ill patients. This comprehensive review aimed to summarize the current evidence regarding the use of vitamin C in the prevention or treatment of patients with SARS-CoV2 infection, based on available publications between January 2020 and February 2021. Overall, 21 publications were included in this review, consisting of case-reports and case-series, observational studies, and some clinical trials. In many of the publications, data were incomplete, and in most clinical trials the results are still pending. No studies regarding prevention of COVID-19 with vitamin C supplementation were found. Although some clinical observations reported improved medical condition of patients with COVID-19 treated with vitamin C, available data from controlled studies are scarce and inconclusive. Based on the theoretical background presented in this article, and some preliminary encouraging studies, the role of vitamin C in the treatment of patients with SARS-CoV-2 infection should be further investigated.


Subject(s)
Ascorbic Acid/therapeutic use , COVID-19 Drug Treatment , Vitamins/therapeutic use , Adult , Aged , Antioxidants/administration & dosage , Antioxidants/therapeutic use , Ascorbic Acid/administration & dosage , Child , Clinical Trials as Topic , Dietary Supplements , Drug Administration Routes , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome , Vitamins/administration & dosage
6.
Pharmacol Ther ; 224: 107825, 2021 08.
Article in English | MEDLINE | ID: covidwho-1117458

ABSTRACT

Coronaviruses (CoVs) are a group of single stranded RNA viruses, of which some of them such as SARS-CoV, MERS-CoV, and SARS-CoV-2 are associated with deadly worldwide human diseases. Coronavirus disease-2019 (COVID-19), a condition caused by SARS-CoV-2, results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with high mortality in the elderly and in people with underlying comorbidities. Results from several studies suggest that CoVs localize in mitochondria and interact with mitochondrial protein translocation machinery to target their encoded products to mitochondria. Coronaviruses encode a number of proteins; this process is essential for viral replication through inhibiting degradation of viral proteins and host misfolded proteins including those in mitochondria. These viruses seem to maintain their replication by altering mitochondrial dynamics and targeting mitochondrial-associated antiviral signaling (MAVS), allowing them to evade host innate immunity. Coronaviruses infections such as COVID-19 are more severe in aging patients. Since endogenous melatonin levels are often dramatically reduced in the aged and because it is a potent anti-inflammatory agent, melatonin has been proposed to be useful in CoVs infections by altering proteasomal and mitochondrial activities. Melatonin inhibits mitochondrial fission due to its antioxidant and inhibitory effects on cytosolic calcium overload. The collective data suggests that melatonin may mediate mitochondrial adaptations through regulating both mitochondrial dynamics and biogenesis. We propose that melatonin may inhibit SARS-CoV-2-induced cell damage by regulating mitochondrial physiology.


Subject(s)
COVID-19 Drug Treatment , Melatonin/pharmacology , Mitochondria/pathology , Aged , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , COVID-19/complications , COVID-19/virology , Coronavirus Infections/complications , Coronavirus Infections/virology , Female , Humans , Melatonin/administration & dosage , Mitochondria/drug effects , Mitochondria/virology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/virology , Virus Replication
8.
Life Sci ; 269: 119099, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1036398

ABSTRACT

AIMS: Azithromycin is widely used broad spectrum antibiotic recently used in treatment protocol of COVID-19 for its antiviral and immunomodulatory effects combined with Hydroxychloroquine or alone. Rat models showed that Azithromycin produces oxidative stress, inflammation, and apoptosis of myocardial tissue. Rosuvastatin, a synthetic statin, can attenuate myocardial ischemia with antioxidant and antiapoptotic effects. This study aims to evaluate the probable protective effect of Rosuvastatin against Azithromycin induced cardiotoxicity. MAIN METHOD: Twenty adult male albino rats were divided randomly into four groups, five rats each control, Azithromycin, Rosuvastatin, and Azithromycin +Rosuvastatin groups. Azithromycin 30 mg/kg/day and Rosuvastatin 2 mg/kg/day were administrated for two weeks by an intragastric tube. Twenty-four hours after the last dose, rats were anesthetized and the following measures were carried out; Electrocardiogram, Blood samples for Biochemical analysis of lactate dehydrogenase (LDH), and creatine phosphokinase (CPK). The animals sacrificed, hearts excised, apical part processed for H&E, immunohistochemical staining, and examined by light microscope. The remaining parts of the heart were collected for assessment of Malondialdehyde (MDA) and Reduced Glutathione (GSH). KEY FINDINGS: The results revealed that Rosuvastatin significantly ameliorates ECG changes, biochemical, and Oxidative stress markers alterations of Azithromycin. Histological evaluation from Azithromycin group showed marked areas of degeneration, myofibers disorganization, inflammatory infiltrate, and hemorrhage. Immunohistochemical evaluation showed significant increase in both Caspase 3 and Tumor necrosis factor (TNF) immune stain. Rosuvastatin treated group showed restoration of the cardiac muscle fibers in H&E and Immunohistochemical results. SIGNIFICANCE: We concluded that Rosuvastatin significantly ameliorates the toxic changes of Azithromycin on the heart.


Subject(s)
Anti-Bacterial Agents/adverse effects , Azithromycin/adverse effects , Cardiotoxicity/prevention & control , Rosuvastatin Calcium/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Antioxidants/administration & dosage , Antioxidants/pharmacology , Apoptosis/drug effects , Azithromycin/administration & dosage , Cardiotoxicity/etiology , Disease Models, Animal , Glutathione/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation/chemically induced , Inflammation/prevention & control , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Rosuvastatin Calcium/administration & dosage , COVID-19 Drug Treatment
9.
Endocr Metab Immune Disord Drug Targets ; 21(10): 1781-1803, 2021.
Article in English | MEDLINE | ID: covidwho-955008

ABSTRACT

The existence of a causal relationship between the rise of the death rate in COVID-19 infected patients and their sufferance from non-communicable pathophysiological conditions, particularly chronic diseases, was recently evidenced. In fact, in addition to the immunodeficiency generated by chronic disease conditions, COVID-19 also led to affect the immune system. Furthermore, the novel coronavirus attacks the lungs and other vital organs such as heart, kidneys, and brain. All these outcomes are accused of being involved in the increasing vulnerability and comorbidity in COVID-19- infected people with chronic diseases. Pharmacological, dietetic and natural approaches were suggested after deep bibliographic research for presenting preventive recommendations for this category of patients in order to avoid the fatal complications of this infection, and consequently limiting the risk of comorbidity. In this regard, some medications could enter into interaction with COVID-19 infection in patients with diabetes or hypertension and thereafter lead to fatal complications. Furthermore, regarding their nutritional values, some foods are more useful than others during this pandemic period because they are rich in vitamins, minerals, antioxidants and perhaps some bioactive phytochemicals, which are known to be effective in improving immune response, managing chronic diseases and/or having antiviral activities. In addition, vitamins, minerals, antioxidants, prebiotics and probiotics could be helpful in these conditions. Interestingly, in order to understand the mechanism of this causality and suggesting efficacious solutions, this review deserves considerable epidemiologic, clinical and experimental investigations.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Chronic Disease/epidemiology , Chronic Disease/therapy , Diet Therapy/methods , Antioxidants/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/metabolism , Comorbidity , Diet Therapy/trends , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Mortality/trends , Vitamins/administration & dosage
10.
J Glob Antimicrob Resist ; 23: 256-262, 2020 12.
Article in English | MEDLINE | ID: covidwho-899142

ABSTRACT

Coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses increase oxidative stress in the body leading to cellular and tissue damage. To combat this, administration of high-dose vitamin C (ascorbic acid or ascorbate), in addition to standard conventional supportive treatments, has been shown to be a safe and effective therapy for severe cases of respiratory viral infection. Morbidity, mortality, infectiveness and spread of infectious diseases are dependent on the host-pathogen relationship. Given the lack of effective and safe antiviral drugs for coronaviruses, there should be more attention in supporting host immune defence, cytoprotection and immunoregulation. Implementation of high-dose vitamin C therapy could dramatically reduce the need for high doses of corticosteroids, antibacterials and antiviral drugs that may be immunosuppressive, adrenal depressive and toxic, complicating the disease course. In order to effectively fight the novel SARS-CoV-2 virus, medical professionals should explore readily available pharmaceutical and nutritional therapeutic agents with proven antioxidant, anti-inflammatory and immunosupportive properties. Supplemental vitamin C may also provide additional benefits for the prevention of viral infections, shorten the disease course and lessen complications of the disease.


Subject(s)
Ascorbic Acid/administration & dosage , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Oxidative Stress/drug effects , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
11.
Biomolecules ; 10(9)2020 08 20.
Article in English | MEDLINE | ID: covidwho-724198

ABSTRACT

There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.


Subject(s)
Adjuvants, Pharmaceutic/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Coronavirus Infections/drug therapy , Melatonin/administration & dosage , Melatonin/therapeutic use , Pneumonia, Viral/drug therapy , Adjuvants, Pharmaceutic/administration & dosage , Adjuvants, Pharmaceutic/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Antioxidants/administration & dosage , Antioxidants/pharmacology , COVID-19 , Homeostasis/drug effects , Humans , Melatonin/pharmacology , Pandemics
12.
J Pineal Res ; 69(3): e12683, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-695144

ABSTRACT

The pharmacological properties of melatonin are well known. However, there is noticeable the lack of clinical trials that confirm the efficacy, security, absence of side effects in the short and long term, and the effective doses of melatonin. This point is especially important in diseases with high morbidity and mortality including COVID-19. There is not treatment for COVID-19, and several anti-inflammatory and antiviral molecules are being tested, and different vaccines are in preparation. Although the SARS-CoV-2 pandemic is apparently improving, it is expected new resurges next fall. Thus, looking for an effective treatment of COVID-19 is mandatory. Melatonin has significant anti-inflammatory, antioxidant, and mitochondrial protective effects, and its efficacy has been demonstrated in multiple experimental models of disease and in a clinical trial in sepsis. Because COVID-19 courses with a severe septic response, multiple reviews proposing melatonin as a treatment for COVID-19 have been published. Nevertheless, there is a lack of experimental and clinical data on the use of melatonin on SARS-CoV-2 infection. Accordingly, we designed a clinical trial with an injectable formulation of melatonin for intravenous perfusion in ICU patients suffering from COVID-19 that has been just approved by the Spanish Agency of Medicines and Medical Devices (AEMPS). The trial will allow by the first time understand the doses and efficacy of melatonin against COVID-19.


Subject(s)
Antioxidants/administration & dosage , Coronavirus Infections/drug therapy , Melatonin/administration & dosage , Pneumonia, Viral/drug therapy , Betacoronavirus , COVID-19 , Humans , Infusions, Intravenous , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
13.
Sci Adv ; 6(23): eaaz5466, 2020 06.
Article in English | MEDLINE | ID: covidwho-602279

ABSTRACT

Uncontrolled inflammatory processes are at the root of numerous pathologies. Most recently, studies on confirmed COVID-19 cases have suggested that mortality might be due to virally induced hyperinflammation. Uncontrolled pro-inflammatory states are often driven by continuous positive feedback loops between pro-inflammatory signaling and oxidative stress, which cannot be resolved in a targeted manner. Here, we report on the development of multidrug nanoparticles for the mitigation of uncontrolled inflammation. The nanoparticles are made by conjugating squalene, a natural lipid, to adenosine, an endogenous immunomodulator, and then encapsulating α-tocopherol, as antioxidant. This resulted in high drug loading, biocompatible, multidrug nanoparticles. By exploiting the endothelial dysfunction at sites of acute inflammation, these multidrug nanoparticles delivered the therapeutic agents in a targeted manner, conferring survival advantage to treated animals in models of endotoxemia. Selectively delivering adenosine and antioxidants together could serve as a novel therapeutic approach for safe treatment of acute paradoxal inflammation.


Subject(s)
Drug Delivery Systems/methods , Endotoxemia/drug therapy , Nanoparticles/chemistry , Squalene/chemistry , Systemic Inflammatory Response Syndrome/drug therapy , Adenosine/administration & dosage , Adenosine/chemistry , Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Endotoxemia/chemically induced , Female , Immunologic Factors/administration & dosage , Immunologic Factors/chemistry , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Squalene/administration & dosage , Systemic Inflammatory Response Syndrome/chemically induced , Treatment Outcome , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/chemistry
14.
Int Rev Immunol ; 39(4): 153-162, 2020.
Article in English | MEDLINE | ID: covidwho-141729

ABSTRACT

The current COVID-19 pandemic is one of the most devastating events in recent history. The virus causes relatively minor damage to young, healthy populations, imposing life-threatening danger to the elderly and people with diseases of chronic inflammation. Therefore, if we could reduce the risk for vulnerable populations, it would make the COVID-19 pandemic more similar to other typical outbreaks. Children don't suffer from COVID-19 as much as their grandparents and have a much higher melatonin level. Bats are nocturnal animals possessing high levels of melatonin, which may contribute to their high anti-viral resistance. Viruses induce an explosion of inflammatory cytokines and reactive oxygen species, and melatonin is the best natural antioxidant that is lost with age. The programmed cell death coronaviruses cause, which can result in significant lung damage, is also inhibited by melatonin. Coronavirus causes inflammation in the lungs which requires inflammasome activity. Melatonin blocks these inflammasomes. General immunity is impaired by anxiety and sleep deprivation. Melatonin improves sleep habits, reduces anxiety and stimulates immunity. Fibrosis may be the most dangerous complication after COVID-19. Melatonin is known to prevent fibrosis. Mechanical ventilation may be necessary but yet imposes risks due to oxidative stress, which can be reduced by melatonin. Thus, by using the safe over-the-counter drug melatonin, we may be immediately able to prevent the development of severe disease symptoms in coronavirus patients, reduce the severity of their symptoms, and/or reduce the immuno-pathology of coronavirus infection on patients' health after the active phase of the infection is over.


Subject(s)
Antioxidants/administration & dosage , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Melatonin/administration & dosage , Nonprescription Drugs/administration & dosage , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Age Factors , Aged , Aging/immunology , Animals , Betacoronavirus/pathogenicity , COVID-19 , Chiroptera/immunology , Chiroptera/virology , Circadian Rhythm/drug effects , Circadian Rhythm/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Photoperiod , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
15.
Int J Mol Sci ; 21(9)2020 Apr 28.
Article in English | MEDLINE | ID: covidwho-133432

ABSTRACT

BACKGROUND: On the 31 December 2019, the World Health Organization (WHO) was informed of a cluster of cases of pneumonia of unknown origin detected in Wuhan City, Hubei Province, China. The infection spread first in China and then in the rest of the world, and on the 11th of March, the WHO declared that COVID-19 was a pandemic. Taking into consideration the mortality rate of COVID-19, about 5-7%, and the percentage of positive patients admitted to intensive care units being 9-11%, it should be mandatory to consider and take all necessary measures to contain the COVID-19 infection. Moreover, given the recent evidence in different hospitals suggesting IL-6 and TNF-α inhibitor drugs as a possible therapy for COVID-19, we aimed to highlight that a dietary intervention could be useful to prevent the infection and/or to ameliorate the outcomes during therapy. Considering that the COVID-19 infection can generate a mild or highly acute respiratory syndrome with a consequent release of pro-inflammatory cytokines, including IL-6 and TNF-α, a dietary regimen modification in order to improve the levels of adiponectin could be very useful both to prevent the infection and to take care of patients, improving their outcomes.


Subject(s)
Antioxidants/administration & dosage , Betacoronavirus , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Diet , Dietary Supplements , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Adiponectin/metabolism , Ascorbic Acid/administration & dosage , COVID-19 , Coronavirus Infections/metabolism , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/metabolism , Flavonoids/administration & dosage , Humans , Interleukin-6/immunology , Interleukin-6/metabolism , Lung Diseases/immunology , Lung Diseases/metabolism , Lung Diseases/therapy , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2 , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL